
Privacy Engineering at Scale 
Amongst the ever-evolving landscape of privacy, the only constant is an agreement on building 
privacy in by design. The implementation of this axiom requires organizations to adopt, build, 
and deploy a new set of privacy engineering practices alongside their product development 
lifecycle. Ideally these practices are prioritized towards the left of this lifecycle to build privacy in 
by default. Therefore, these practices and associated privacy enhancing technologies need to be 
mature, broadly applicable, and easy to operationalize.  
 
Yet many of the privacy enhancing technologies that gain traction in the privacy engineering 
research community do not fulfill these criteria. Consider differential privacy, synthetic data 
generation, or homomorphic encryption. Neither is broadly applicable as they solve distinct 
privacy problems for specific product use cases. For example, it is hard to construct a one size fit 
all synthetic data solution that can be used by developers, as different data types may require a 
distinct model for synthetic data generation due to the underlying differences in the properties 
of the data. Similarly, homomorphic encryption has not yet matured enough to provide the 
comparable computational speeds as operations over plaintext data and furthers the challenges 
of key management. Finally, the limits of differential privacy were recently documented in the 
US government’s decision to pull back from using the technology for American Community 
Survey.  
 
Yet there are technologies that can be used to build privacy through engineering that are less 
discussed. For example, consider privacy threat modeling. Threat modeling is an excellent way to 
build privacy in as it looks to identify privacy threats at an architecture level, before any code is 
written. Kim Wuyt and other researchers from University of Leuven have designed a LINDDUN a 
privacy threat modeling framework. This approach has been further extended by Jayati et al. into 
MAP or Models of Applied Privacy, which integrates a persona-based approach to threat 
modeling reducing the need for privacy expertise and leveraging a solutions that developers and 
product managers are already familiar with. Kristen et al. have further suggested the use of rules-
based solutions like Threagile to automate aspects privacy threat modeling.  
 
Another example is static code-analyses for privacy. Once threat modeling is done and 
developers begin to write code, static code analyses is often used in security to identify security 
vulnerabilities. A similar approach can be used for privacy. Vendors like Privado.ai are offering 
open-source solutions for code written in Java. However, others can potentially build these 
capabilities from scratch using solutions like CodeElf and Graph4Code. This allows product teams 
to identify what data is being collected, where it is being collected, and where it is sent – for each 
and every pull request. This visibility allows for better privacy impact assessments.  
 
Finally, once a product is ready for shipping it may be possible to do privacy assessments, similar 
to security assessments, using dynamic code analysis for privacy. For example, researchers have 
detected privacy violations like COPPA violations by analyzing data flows at runtime in Android 
mobile applications. If used by developers and product teams a similar approach can be used to 
validate compliance against specific privacy requirements.  



 
 
Much of the discourse around privacy enhancing technologies is limited to solutions with limited 
applications and requiring further maturity. This paper, instead, highlights the emerging set of 
developer-oriented privacy enabling technologies. First, we discuss applied privacy threat 
modeling and scaling it using rules-based engines. Second, we discuss static code analysis tools 
and how they can be leveraged for detecting privacy violations. Finally, we discuss dynamic code 
analysis tools and how they can be used to validate privacy requirements.  
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