
Privacy Engineering at Scale
Amongst the ever-evolving landscape of privacy, the only constant is an agreement on building
privacy in by design. The implementation of this axiom requires organizations to adopt, build,
and deploy a new set of privacy engineering practices alongside their product development
lifecycle. Ideally these practices are prioritized towards the left of this lifecycle to build privacy in
by default. Therefore, these practices and associated privacy enhancing technologies need to be
mature, broadly applicable, and easy to operationalize.

Yet many of the privacy enhancing technologies that gain traction in the privacy engineering
research community do not fulfill these criteria. Consider differential privacy, synthetic data
generation, or homomorphic encryption. Neither is broadly applicable as they solve distinct
privacy problems for specific product use cases. For example, it is hard to construct a one size fit
all synthetic data solution that can be used by developers, as different data types may require a
distinct model for synthetic data generation due to the underlying differences in the properties
of the data. Similarly, homomorphic encryption has not yet matured enough to provide the
comparable computational speeds as operations over plaintext data and furthers the challenges
of key management. Finally, the limits of differential privacy were recently documented in the
US government’s decision to pull back from using the technology for American Community
Survey.

Yet there are technologies that can be used to build privacy through engineering that are less
discussed. For example, consider privacy threat modeling. Threat modeling is an excellent way to
build privacy in as it looks to identify privacy threats at an architecture level, before any code is
written. Kim Wuyt and other researchers from University of Leuven have designed a LINDDUN a
privacy threat modeling framework. This approach has been further extended by Jayati et al. into
MAP or Models of Applied Privacy, which integrates a persona-based approach to threat
modeling reducing the need for privacy expertise and leveraging a solutions that developers and
product managers are already familiar with. Kristen et al. have further suggested the use of rules-
based solutions like Threagile to automate aspects privacy threat modeling.

Another example is static code-analyses for privacy. Once threat modeling is done and
developers begin to write code, static code analyses is often used in security to identify security
vulnerabilities. A similar approach can be used for privacy. Vendors like Privado.ai are offering
open-source solutions for code written in Java. However, others can potentially build these
capabilities from scratch using solutions like CodeElf and Graph4Code. This allows product teams
to identify what data is being collected, where it is being collected, and where it is sent – for each
and every pull request. This visibility allows for better privacy impact assessments.

Finally, once a product is ready for shipping it may be possible to do privacy assessments, similar
to security assessments, using dynamic code analysis for privacy. For example, researchers have
detected privacy violations like COPPA violations by analyzing data flows at runtime in Android
mobile applications. If used by developers and product teams a similar approach can be used to
validate compliance against specific privacy requirements.

Much of the discourse around privacy enhancing technologies is limited to solutions with limited
applications and requiring further maturity. This paper, instead, highlights the emerging set of
developer-oriented privacy enabling technologies. First, we discuss applied privacy threat
modeling and scaling it using rules-based engines. Second, we discuss static code analysis tools
and how they can be leveraged for detecting privacy violations. Finally, we discuss dynamic code
analysis tools and how they can be used to validate privacy requirements.

Bibliography

1. Domingo-Ferrer, J., Sánchez, D. and Blanco-Justicia, A., 2021. The limits of differential privacy
(and its misuse in data release and machine learning). Communications of the ACM, 64(7), pp.33-
35.

2. Wuyts, K., Sion, L. and Joosen, W., 2020, September. Linddun go: A lightweight approach to
privacy threat modeling. In 2020 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW) (pp. 302-309). IEEE.

3. Dev, J., Rashidi, B. and Garg, V., 2023. Models of Applied Privacy – A Persona Based Approach
to Privacy Threat Modeling. In 2023 ACM Computer Human Interaction. ACM.

4. Tan, K. and Garg, V. 2022. Privacy Shift Left – A Machine Assisted Threat Modeling Approach.
Usenix Privacy Engineering, Practice, and Respect.

5. https://www.privado.ai/open-source
6. https://unbug.github.io/codelf/
7. https://github.com/wala/graph4code
8. Reyes, I., Wijesekera, P., Razaghpanah, A., Reardon, J., Vallina-Rodriguez, N., Egelman, S. and

Kreibich, C., 2017, May. " Is Our Children's Apps Learning?" Automatically Detecting COPPA
Violations. In Workshop on Technology and Consumer Protection (ConPro 2017), in conjunction
with the 38th IEEE Symposium on Security and Privacy (IEEE S&P 2017).

9. Sanfilippo, M.R., Shvartzshnaider, Y., Reyes, I., Nissenbaum, H. and Egelman, S., 2020. Disaster
privacy/privacy disaster. Journal of the Association for Information Science and Technology, 71(9),
pp.1002-1014.

